
Ghanshyam Gagged et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 9), April 2014, pp.88-93

www.ijera.com 88 | P a g e

A Novel Model Based Testing (MBT) Approach for Software

Validation

Ghanshyam Gagged, Vengatesan Natarajan, Kauser Ahmed P
School Of Computer Science And Engg VIT University Vellore, India

Enterprise-NMS Alcatel-Lucent India Limited Chennai, India

School of Computer Science and Engg VIT University Vellore, India

ABSTRACT
Software validation is an important activity in order test whether the correct software has been developed.

Several testing techniques have been developed, and one of these is model based testing (MBT). The main

purpose of Model based testing is to test a software product from a user's point of view. Hence, usage models

are designed and then test cases are developed from the models. The development of test cases from the usage

model can be made automatically by using a tool. In order to increase the efficiency of the test phase, software

tools are important. This paper presents a tool for model based testing called MaTeLo. The tool is developed in

a joint European project with six industrial partners and two university partners.

As the major outcome of a European project, MaTeLo is a test tool based on the Markov Chain model. This

project is used to investigate specification languages for various industries, specifications simulation methods

and associated tools. MaTeLo provides an automatic generator which generates test cases based on a Markov

Chain usage model and statistical testing methods. MaTeLo supports test execution in heterogeneous

environments. In addition, it also provides users with test results analysis and quality reports generation. The

tool use model-based metrics to accurately evaluate software reliability and performance throughout the

development process. This project integrates the testing tools in real development environments for industrial

validation.

- MaTeLo offers a graphical way to formalize the requirements test specification based on a usage model that

makes the links between Doors, TestStand.

- MaTeLo generates automatically different kind of TestStand test sequences and systematically improves the

SUT reliability; reduce the testing cost and duration

Keywords - Model Based Testing, MaTeLo, Automation testing, Manual testing, Markov Chains.

I. INTRODUCTION
One main purpose of the testing phase is to

evaluate the quality of a software product. An

important quality attribute is reliability, which is

defined as failure-free operation during a specified

time period. The goal of testing is failure detection,

observable differences between the behaviours of

implementation and what is expected on the basis of

the specification. Testing has a predominant role

when developing software.

Generally it is classified in two ways

Manual testing

This type includes the testing of the

Software manually i.e. without using any automated

tool or any script. In this type the tester takes over the

role of an end user and test the Software to identify

any un-expected behaviour or bug. There are different

stages for manual testing like unit testing, Integration

testing, System testing and User Acceptance testing

[1]. Testers use test plan, test cases or test scenarios

to test the Software to ensure the completeness of

testing. Manual testing also includes exploratory

testing as testers explore the software to identify

errors in it [1].

Automation testing

Automation testing which is also known

as test automation is when the tester writes scripts

and uses different software to test the product [2].

This process involves automation of a manual

process. Automation testing is used to re-run the test

scenarios that were performed manually, quickly and

repeatedly.

RESEARCH ARTICLE OPEN ACCESS

Ghanshyam Gagged et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 9), April 2014, pp.88-93

www.ijera.com 89 | P a g e

Fig1: Overview of Automation Testing

II. LITERATURE SURVEY
As per Sandeep et al. [5] manual testing is a

very costly and time consuming process. This type

includes the testing of the Software manually i.e.

without using any automated tool or any script. In this

type the tester takes over the role of an end user and

test the Software to identify any un-expected

behaviour or bug. In order to reduce this cost and

increase reliability, model based testing approach is

used. Model Based Testing (MBT) is a process of

generating test cases and evaluating test results based

on the design and analysis models. MBT lies in

between specification and code based testing [5].

Hence it is also known as Gray-Box testing approach.

A wide range of models like UML, State charts, Data

flow diagrams, Control flow diagrams etc. have been

used in MBT [5].

Nirpal et al have mentioned that Genetic

Algorithm starts with a set of first generation

individuals, which are then grouped at random from

the problem area. The algorithms are generated to

execute a series of executions that transforms the

present generation into a new and filter generation

[6]. Each individual in each generation is evaluated

with a fitness function. Based on this evaluation the

individual may approach the optimal solution to

generate the test cases for the product [6]

Martin Glinz et al. [7] have mentioned that

scenarios (Use cases) are used to describe the

functionality and behaviour of a (software) system in

a user-cantered perspective. A Sequence diagram

represents interaction between different process and

the order in which they interact. These interactions

are arranged in time sequence, and represent the

objects and classes that are involved in the scenario.

The messages that are required to carry out the

functionality between object are also depicted with

the help of sequence diagram, as scenarios form a

kind of abstract level test cases for the system under

development, the idea to use them to derive test cases

for the system test is quite intriguing. Yet in practice

scenarios from the analysis phase are seldom used to

create concrete system test cases [7].

III. MODEL BASED TESTING
Model-Based Testing is the application of

Model-Based Design for software testing; this

concept has been adopted by many companies and

integrated into both hardware and software systems

testing. The process typically consumes functional

requirements as inputs, and produces test cases. The

test cases generation is done according to a model

describing the required behavior of the system. The

testing effort is made by test engineers during the

design of the usage model [4]. The effectiveness of

Model-Based Testing is highly increased with

automation, i.e. the capacity to automatically

translate test cases into executable test material.

The model based testing process begins with

requirements [4]. A model for user behavior is built

from requirements for the system. Those building the

model need to develop an understanding of the

system under test and of the characteristics of the

users, the inputs and output of each user, the

conditions under which an input can be applied; etc

Fig2: Overall Architecture of Model Based

Framework

The model is used to generate test cases,

typically in an automated fashion. The specification

of test cases should include expected outputs. The

model can generate some information on outputs,

such as the expected state of the system. Other

information on expected outputs may come from

somewhere else, such as a test oracle [4]. The system

is run against the generated tests and the outputs are

Test
Execution

Test
Automation

Test Script

Ghanshyam Gagged et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 9), April 2014, pp.88-93

www.ijera.com 90 | P a g e

compared with the expected outputs. Here, too,

automation is extremely useful. The failures are used

to identify bugs in the system. The test data is also

used to make decisions, for example, on whether

testing should be terminated and the system released.

IV. MaTeLo MODEL
Model can be used to represent the desired

behavior of the System under Test (SUT). MaTelo is

more independent of development technologies and it

can be integrated ideally with the most frequently

applied methodologies and processes [8]. MaTelo

uses Markov Chains to describe the test model of the

system. The test model is basically a collection of

state diagrams and transitions and it represents the

possible usage of the system and also helps to

improve the business value for customer as well as

the vendor [8]. MaTeLo tool accepts two kinds of

input information: scenarios and usage patterns.

These inputs are presented as MSCs or UML

sequence diagrams, which specify the user

interactions with the system. Users can use the tool to

translate them into a state chart. Or users can directly

specify the usage of system as state charts, and feed

into MaTeLo [9]. All of these models describe the

usage of the software

Fig 3: Overview of the logical component in the

MaTeLo tool

When the state chart has been derived,

probabilities in the transitions between states are

either automatically calculated using a pre-defined

distribution or they can be specified by the user [9].

This is carried out in the Markov Usage Editor (MU).

In the MU, one or several usage profiles can be used.

This is valuable since different intended users will

utilize the software differently.

The state, condition, asynchronous and the

transitions can be added in the graph by using the

button available in tool bar of MaTelo- Usage Model

Editor [10]. For state properties addition use the

button in the tool bar to enter in selection mode. It is

possible to create two different types of states

 A normal state

 A macro state which calls sub-chains

To add a properties on transitions there are four type

of parameter available on transition: Input, Manual

Expected Result (MER), Automatic Expected Result

(AER) or Function.

The edition window of transition properties include 5

tabs

 The “main” tab allows defining the usage

frequency, input, AER, MER and transferring

function.

 The “Condition” tab is active only on

conditionals transitions and permit to define the

going by condition of this transition.

 The “context” tab allows defining one or several

functions to update the context.

 The “TestStand Functions” tab allows defining

the functions which are used with TestStand.

 The “Requirement” tab allows adding some

requirement for the current transition.

Ghanshyam Gagged et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 9), April 2014, pp.88-93

www.ijera.com 91 | P a g e

Fig 4: A screen shot of the usage Model editor

When the usage models have been designed,

the tool checks whether the model has been correctly

designed and then it converts the usage models into

test cases [12]. The test language used is TTCN-3. In

Figure 5 a screen shot of the test interface of MaTeLo

is shown.

Fig 5: A screen shot of test suite generator

To generate the test suite you have to select

the test suite generation tab, there are five algorithms

available for test suite generation User-oriented

generation, User-oriented generation (limit), Most

probable generation, Minimum generation, Tagged

path [11]. If the generation is ok then the generation

report will be generated

After the test cases have been derived, they

are run on the system under test and the outcome is

analyzed. Several important metrics are automatically

calculated in the tool, for example, the reliability of

the system and the coverage of the usage models [12].

This provides useful information to the testers of

whether the software is good-enough to be released.

The output of the testing also shows what failures

have been detected. The reliability calculation is

based on theory of Markov models.

Ghanshyam Gagged et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 9), April 2014, pp.88-93

www.ijera.com 92 | P a g e

 Fig 6: A screen shot of convertor

The objective of this functionality is to

convert the test files generated by MaTeLo to any test

format. The conversion is done with a style

sheet XSLT. The XSLT processor used is XALAN

2.7.1 (this library is integrated to the convertor), this

property allows for writing a test file directly from

the style sheet. Apart from this convertor is also used

to convert the version of model.

V. IMPORTANCE OF MaTeLo TOOL
The main objective of MaTeLo is to utilize

SUT to derive test cases from usage models. Hence,

this means that the testers will develop a model of the

usage of the software [10]. Since different users will

use the software in different ways, several usage

profiles can be developed. For example, the usage

profiles can be divided into novice users and

experienced users. Since the usage of the software

will differ

Another benefit of MaTeLo is that if someone is

more familiar with Message Sequence Charts (MSC)

or UML sequence diagrams, the user can specify the

basic input to the tool in these notations [11]. After

the communication between the user and the software

under test has been specified, MaTeLo automatically

converts the input to a state chart. Then the user can

provide probabilities to the transitions in the chart, or

even this can be made automatically by using a

certain distribution.

Another main benefit of MaTeLo is the automatic

calculation of quality metrics, such as reliability and

coverage of the usage models [10]. This provides

valuable input to the testers, so they know when to

stop testing. The reliability value can be decided

beforehand; then the tool will provide answers of

whether it is necessary to continue testing or not.

The main benefits of MaTeLo are

• Tests software from the users’ point of view by

using different usage profiles.

• Automatically converts usage models into test

cases.

• Calculates important metrics (for example,

reliability) that can be used as stopping criterion

of the testing.

VI. CONCLUSION
This paper discusses a review of model-

based software testing and MaTeLo tools as a

tutorial. It presents the basic concepts, workflow,

objectives, importance and benefits in model-based

testing. Model-based testing involves the following

major activities: building the model, defining test

selection criteria and transforming them into

operational test case specifications, generating tests,

conceiving, setting up the adaptor component and

finally executing the tests on the SUT. MaTelo is

based on statistical usage testing. At the front-end of

the tool, testers provide the tool with models the

intended usage of the software. This means the most

critical failures will be detected, since the test cases

cover the usage and not the technical specification.

The output of the tool is test cases, which can be run

on the system under test. Furthermore, the tool also

provides testers and managers with important quality

metrics such as reliability of the system and coverage

of the user model.

ACKNOWLEDGEMENTS
I would like to show my immense gratitude to Mr.

Murali Krishnan Arunachalam, program director,

Alcatel-Lucent India Pvt Ltd for giving me the

opportunity and support he has provided during my

project.

I express my sincere thanks to Mr. Vengatesan

Natarajan, QA Manager, Alcatel-Lucent India Pvt

Ltd for giving me the opportunity and guidance to do

this project. His constant support and discussion on

relevant topics cannot be thanked by mere use of

words

I take immense pleasure and very deep sense of

gratitude in conveying my special, sincere and

heartfelt thanks to my guide Mr. Kauser Ahmed P,

Professor School of Computing Science and

Engineering, VIT University, Vellore.

Ghanshyam Gagged et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 9), April 2014, pp.88-93

www.ijera.com 93 | P a g e

REFERENCES
[1] R. Mall, Fundamentals of software

engineering, 2nd Ed. New Delhi: Prentice-

Hall of India Ltd, 2008.

[2] S.-D. Gouraud, A. Denise, M.-C. Gaudel, B.

Marre. A new way of automating statistical

testing methods. Proceedings of the 16th

IEEE international conference on automated

software engineering, 2001

[3] Blackburn, M., Busser, R., and Nauman, A.

"Why Model-Based Test Automation is

Different and What You Should Know to

Get Started." In International Conference on

Practical Software Quality (2004).

[4] A. Pretschner, W. Prenninger, S. Wagner, C.

Kühnel, M. Baumgartner, B. Sostawa, R.

Zölch, and T. Stauner, “One Evaluation of

Model-Based Testing and Its Automation,”

Proceedings of the 27th International

Conference on Software Engineering, May

15–21, 2005, St. Louis, Missouri, ACM,

New York (2005), pp. 392–401.

[5] Sandeep K. Singh, Sangeeta Sabharwal, J. P.

Gupta, "A Novel Approach for deriving test

scenarios and test cases from events",

Journal of Information Processing Systems,

Vol. 8, No. 2, June 2012.

[6] Premal B Nirpal, K. V. Kale, "Using Genetic

Algorithm for Automated Efficient Test case

generation for Path testing", Int. J. Advance

Networking and Application, Volume 02

Issue 06, pp 911-915 (2011)

[7] Johannes Ryser, Martin Glinz, "A scenario-

Based Approach to Validating and Testing

Software Systems Using Statecharts", 12th

International Conference on Software and

Systems Engineering and their Applicaions

ICSSE 99

[8] R. V. Binder, “Testing Object-Oriented

System Models, Patterns, and Tools”, NY:

Addison-Wesley, 1999.

[9] Kelly D.P. and Oshana, R.S., “Improving

software quality using statistical testing

techniques”, Information and Software

Technology, 42(12):801-807, 2000.

[10] Whittaker J. A and Thomason, M. G., “A

Markov Chain Model for Statistical

Software Testing”, IEEE Transactions on

Software Engineering, 20(10):812-824, 1994

[11] Kirk Sayre. Improved Techniques for

Software Testing Based on Markov Chain

Usage Models. PhD thesis, University of

Tennessee, Knoxville, December 99.

[12] J. Grabowski, A. Wiles, C. Willcock and D.

Hogrefe. On the design of the new testing

language TTCN-3. Proceedings 13’h IFIP

International Workshop on Testing

Communication Systems (TestCom 2000),

Ottawa, August 2000.

